

Absolute encoders – multiturn

Compact, robust electronic multiturn, magnetic

Sendix M3661R (shaft)

Analog

The Sendix M36 with Energy Harvesting Technology is an electronic multiturn encoder in miniature format, without gear and without battery.

The "R" obust version is particularly suitable for use in harsh environments. Protected up to IP69k, resistance against shock and extreme temperature fluctuations, the Sendix M36 encoder is suitable even for demanding outdoor applications.

Safety- S1 ockplusTM s

Standard option stainless steel

Standard option seawater resistant

High ro

al lei

range High prote range level

h protection F level

gh shaft load capacity

resistant protection resistant

' F

Energy Harvesting

Highest robustness

- Sturdy bearing construction in Safety-Lockplus[™] design for particularly high resistance.
- · Extra large bearings.
- · Mechanically protected shaft seal.
- · Protection level IP66, IP67 and IP69k in one device.
- Wide temperature range -40 °C ... +85 °C.
- Without gear and without battery, thanks to the Energy Harvesting technology.

Application oriented

- · Current output 4 ... 20 mA.
- Voltage output 0 ... 10 V or 0 ... 5 V.
- · Measuring range scalable.
- Limit switch function.

Order code Shaft version

$\begin{bmatrix} 8.M3661R \\ \text{Type} \end{bmatrix} \cdot \begin{bmatrix} X & X & X & X \\ \textbf{0} & \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix} \cdot \begin{bmatrix} X & X & X \\ \textbf{0} & \textbf{0} \end{bmatrix}$

- a Version
- 1 = standard 1)
 - clamping flange ø 42 mm [1.65"]
- 7 = stainless steel V4A ²⁾
 clamping flange ø 42 mm [1.65"]
 all metal parts accessible from outside
 are out of stainless steel V4A
- **b** Shaft (ø x L), with flat
- $1 = \emptyset 6 \times 12.5 \text{ mm} [0.24 \times 0.49"]$
- $3 = \emptyset 8 \times 15 \text{ mm} [0.32 \times 0.59"]$
- $5 = \emptyset 10 \times 20 \text{ mm} [0.39 \times 0.79"]$
- 2 = Ø 1/4" x 12.5 mm [0.49"]
- $E = \emptyset 10 \times 20 \text{ mm } [0.39 \times 0.79"],$ stainless steel V4A

- © Output circuit 3)
- 3 = current output
- 4 = voltage output
- d Type of connection
- 2 = radial cable, 1 m [3.28'] PVC
- B = radial cable, special length PVC *)
- 4 = radial M12 connector, 5-pin
- *) Available special lengths (connection types B): 2, 3, 5, 8, 10, 15 m [5.56, 9.84, 16.40, 26.25, 32.80, 49.21'] order code expansion .XXXX = length in dm ex.: 8.M3661R.133B.3112.0030 (for cable length 3 m)
- Interface / resolution / supply voltage
- $3 = 4 \dots 20 \text{ mA} / 12 \text{ bit} / 10 \dots 30 \text{ V DC}$
- $4 \, = 0 \, ... \, 10 \, V \, / \, 12 \, bit \, / \, 15 \, ... \, 30 \, V \, DC$
- 5 = 0 ... 5 V / 11 bit / 10 ... 30 V DC

- Measuring range
- 1 = 16 revolutions / cw
- 2 = 16 revolutions / ccw
- 3 = scalable up to 65,536 revolutions, with limit switch function / cw
- 4 = scalable up to 65,536 revolutions, without limit switch function / cw
- 5 = scalable up to 65,536 revolutions, with limit switch function / ccw
- 6 = scalable up to 65,536 revolutions, without limit switch function / ccw

Optional on request

- Ex 2/22 (only for connection type 4)
- other shaft diameters out of V4A stainless steel

¹⁾ Not in conjunction with shaft type "E"

Only in conjunction with shaft type "E" + type of connection "4".

³⁾ Output circuit "3" only in conjunction with interface "3", output circuit "4" only in conjunction with interface "4" or "5".

Absolute encoders – multiturn

Compact, robust		
electronic multiturn, magnetic	Sendix M3661R (shaft)	Analog

Mounting accessory for sha	Order no.	
Coupling	Bellows coupling ø 19 mm [0.75"] for shaft 8 mm [0.32"]	8.0000.1102.0808 ¹⁾
Cables and connectors		Order no.
Preassembled cables	M12 female connector with coupling nut, 5-pin, A coded, straight single ended 2 m [6.56'] PVC cable	05.00.6081.2211.002M ¹⁾
Connectors	M12 female connector with coupling nut, 5-pin, A coded, straight (metal)	8.0000.5116.0000 ¹⁾
	M12 female connector with coupling nut, 5-pin, A coded, straight (stainless steel V4A)	8.0000.5116.0000.V4A

Further Kübler accessories can be found at: kuebler.com/accessories
Further Kübler cables and connectors can be found at: kuebler.com/connection-technology

Technical data

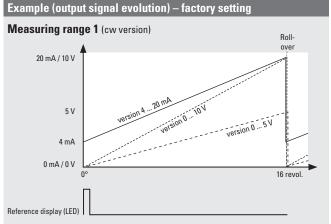
Electrical charac	teristics current	interface 4 20 mA		
Supply voltage		10 30 V DC		
Current consumption (no load)		max. 30 mA		
Reverse polarity protection of the supply voltage		yes		
Short-circuit proof ou	ıtputs	yes ²⁾		
Measuring range	factory setting optionally scalable	2 ⁴ revolutions up to 2 ¹⁶ revolutions		
DA converter resolut	ion	12 bit		
Singleturn accuracy,	at 25 °C [77 °F]	±1°		
Temperature coeffici	ent	< 100 ppm/K		
Repeat accuracy, at 2	25 °C [77 °F]	±0.2°		
Output load	at 10 V DC at 24 V DC at 30 V DC	max. 200 Ohm max. 900 Ohm max. 1200 Ohm		
Setting time		< 1 ms, R _{Burden} = 900 Ohm, 25 °C [77 °F]		
LEDs (green/red)		- system status - current loop interruption — input load too high - reference point display (only with factory settings) at cw: betw. 0° and 1° at ccw: betw. 0° and -1° - status in teach mode		
Options		 output signal scalable via the teach inputs output signal scalable via the teach inputs + limit switch function 		
Teach inputs		level = +V for 1 s minimum		
PowerON Time		<1 s		
Update rate		1 ms		

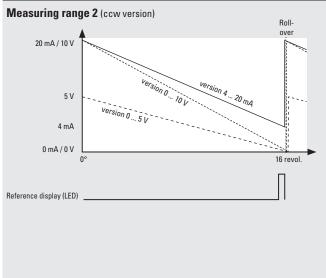
Electrical chara	icteristics voltage	interface 0 10 V / 0 5 V	
Supply voltage	output 0 5 V output 0 10 V	10 30 V DC 15 30 V DC	
Current consumption (no load)		max. 30 mA	
Reverse polarity protection of the supply voltage		yes	
Short-circuit proof	outputs	yes ²⁾	
Measuring range	factory setting optionally scalable	2 ⁴ revolutions up to 2 ¹⁶ revolutions	
DA converter resol	ution 0 10 V 0 5 V	12 bit 11 bit	
Singleturn accurac	cy, at 25 °C [77 °F]	±1°	
Temperature coefficient		< 100 ppm/K	
Repeat accuracy, at 25 °C [77 °F]		±0.2°	
Current output		max. 10 mA	
Setting time		< 1 ms, R _{Load} = 1000 Ohm, 25 °C [77 °F]	
LEDs (green/red)		 system status reference point display (only with factory settings) at cw: betw. 0° and 1° at ccw: betw. 0° and -1° status in teach mode 	
Options		output signal scalable via the teach inputs output signal scalable via the teach inputs + limit switch function	
Teach inputs		level = +V for 1 s minimum	
PowerON Time		<1s	
Update rate		1 ms	

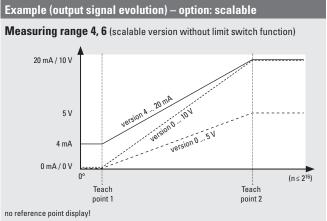
¹⁾ Not for version "7" (V4A stainless steel)

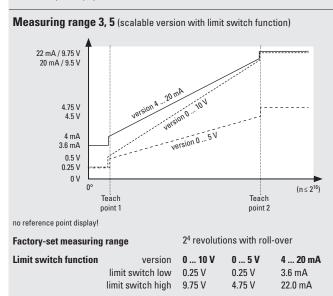
<sup>When the supply voltage is correctly applied.
But not output to +V. Supply voltage and sensor output signal are not galvanically isolated.</sup>

Absolute encoders - multiturn


Compact, robust electronic multiturn, magnetic


Sendix M3661R (shaft)


Analog


Mechanical characteristics			
Maximum speed	4000 min ⁻¹ 2000 min ⁻¹ (continuo	ous)	
Starting torque at 20 °C [68 °F]	< 0.01 Nm		
Shaft load capacity radial axial	80 N 40 N		
Weight	approx. 250 g [8.82 oz]		
Protection acc. to EN 60529/DIN 40050-9	IP66, IP67, IP69k		
Working temperature range	-40 °C +85 °C [-40	°F +185 °F]	
Working temperature range Materials	-40 °C +85 °C [-40 version "1" (standard)	°F +185 °F] version "7" (stainless steel)	
	version "1"	version "7"	
Materials shaft flange housing	version "1" (standard) V2A aluminum zinc die-cast	version "7" (stainless steel) V4A V4A	

Approvals		
E1 compliant in accordance with	ECE guideline	
UL compliant in accordance with	File no. E224618	
CE compliant in accordance with		
EMC Directive	2014/30/EU	
RoHS Directive	2011/65/EU	
ATEX Directive	2014/34/EU (for Ex 2/22 variants)	
UKCA compliant in accordance with		
EMC Regulations	S.I. 2016/1091	
RoHS Regulations	S.I. 2012/3032	
UKEX Regulations	S.I. 2016/1107 (for Ex 2/22 variants)	

Absolute encoders - multiturn

Compact, robust electronic multiturn, magnetic Sendix M3661R (shaft) Analog

Terminal assignment

Interface	Type of connection	Cable (isolate unused cores individually before initial start-up)					
3 2.0	Signal:	0 V	+V	+1	SET 1 1)	SET 2 1)	
(current)	2, B	Core color:	WH	BN	GN	GY	PK
	1						
Interface	Type of connection	M12 connector, 5	pin				
3	3 (current) 4	Signal:	0 V	+V	+1	SET 1 1)	SET 2 1)
(current)		Pin:	3	2	1	5	4
Interface	Type of connection	Cable (isolate unused cores individually before initial start-up)					
4, 5	Signal:	0 V	+V	+U	SET 1 1)	SET 2 1)	
(voltage)	(voltage) 2, B	Core color:	WH	BN	GN	GY	PK
Interface	Type of connection	M12 connector, 5 pin					
4, 5	4	Signal:	0 V	+V	+U	SET 1 1)	SET 2 1)
(voltage)	4	Pin:	3	2	1	5	4

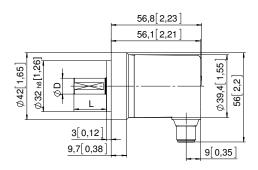
+V: Supply voltage encoder +V DC 0 V: Supply voltage encoder ground GND (0 V)

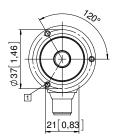
+U: Voltage +I: Current SET 1: Set input for teachpoint 1 SET 2: Set input for teachpoint 2 Top view of mating side, male contact base

M12 connector, 5-pin

Absolute encoders - multiturn

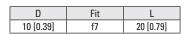
Compact, robust
electronic multiturn, magnetic
Sendix M3661R (shaft)
Analog

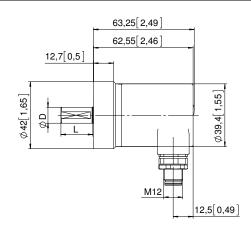

Dimensions

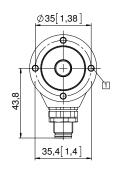

Dimensions in mm [inch]

Aluminum clamping flange, ø 42 [1.65] version 1

1 3 x M3, 6 [0.24] deep


D	Fit	L
6 [0.24]	h7	12.5 [0.49]
8 [0.32]	h7	15 [0.59]
10 [0.39]	f7	20 [0.79]
1/4"	h7	12.5 [0.49]





Stainless steel V4A clamping flange, ø 42 [1.65] version 7

1 4 x M4, 8 [0.31] deep

